
Off-diagonal density matrix for single-beam two-photon absorbed light

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1978 J. Phys. A: Math. Gen. 11 435

(http://iopscience.iop.org/0305-4470/11/2/018)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 18:45

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/11/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen., Vol. 11, No. 2, 1978. Printed in Great Britain. @ 1978 

ADDENDUM 

Off -diagonal density matrix for single- beam two-photon 
absorbed light 
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t Physics Department, College of Science, Al-Mustansiriyah University, Baghdad, Iraq 
$. Physics Department, Essex University, Colchester CO4 3SQ, UK 

Received 14 September 1977 

Abstract. We derive general expressions for the time dependence of off-diagonal matrix 
elements of the density operator for single-mode light subjected to two-photon absorp- 
tion. In conjunction with previous results for the diagonal matrix elements, they enable all 
measurable properties of the light to be calculated. The case of electric-field measure- 
ments is briefly considered. 

1. Introduction 

The present paper is an addendum to that of Simaan and Loudon (1975) which 
considered the time development of the statistical properties of a single beam of light 
subjected to two-photon absorption. The discussion was there limited to the diagonal 
elements of the density operator and it was shown that for various kinds of initial light 
beam, the light eventually becomes ‘antibunched’, that is, its degree of second order 
coherence falls below the value unity (see also Chandra and Prakash 1970). There has 
been recent interest in the properties of antibunched light (see Loudon 1976 for a 
review) and the main aim of the present extension is a fuller study of such light. We 
here derive the time dependence of the off-diagonal matrix elements of the density 
operator for two-photon absorbed light, thus providing a complete specification for all 
measurable properties of the light. The results are applied to one of the simplest 
off-diagonal properties, namely the electric field of the light beam. 

2. Hamiltonian and master equation 

The basic system considered and much of the notation used are the same as in Simaan 
and Loudon (1975) and need only be briefly specified. The Hamiltonian for the 
coupled light and the N non-interacting two-level atoms in two-photon resonance is 
(Shen 1967) 

A = fIwa^+ci +tho0 1 i (&2i -c^:ic^li)+h 1 i (KC :̂ic l̂ia^a  ̂+K*a^ta^tc^:ic^zi), (1) 

where w and wo (= 2 w )  are the frequencies of the light and the atomic transition, a^t 
and a  ̂ are photon creation and destruction operators, and the c operators refer to the 
ground state 11) and excited state 12) of the ith atom. 
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It is assumed here that almost all the N atoms are maintained in their ground 
states by some external influence and that two-photon emission can therefore be 
ignored. Standard techniques (Shen 1967, McNeil and Walls 1974) then lead to the 
following master equation for the reduced density operator p* of the light field: 

dp*/d t = N (J/  2)(2SSp*S 6 - St 6 'SS$ - p*d S SS ), (2) 
where J is proportional to IKI2. The off-diagonal matrix elements of the density 
operator in the Fock representation thus satisfy 
dpn,ng/dT=[(n +l)(n+2)(n'+l)(n'+2)]  '/2 ~ n + ~ , n ' + ~ ~ ~ [ n ( n - 1 ) + n ' ( 1 2 ' - 1 ) ] ~ n . n '  (3) 

where 
7 = NJt. (4) 

The solution of these equations for the diagonal case n = n '  has been extensively 
treated by Simaan and Loudon (1975). 

It is convenient in the off-diagonal case to set 

P n , n ' ( T ) = P n , n + r ( T ) =  [n! / (n  +cL>!l'/'~n(cL, T ) ,  (5  ) 

where p is restricted to positive integers and denotes the degree of off-diagonality. 
The inverse matrix elements are given by 

Pn+cr,n(T) = P L + & ( T ) .  (6) 

d$n/dT = (n + l)(n + 2 ) 4 n + 2 -  [n  (n - 1) +W + & (P - 1)1Jln, (7) 

The transformed matrix elements &, satisfy an equation obtained from (3) 

which is now free of square-root factors. Note that the equation only connects matrix 
elements with equal degrees of off -diagonality. 

We give particular attention to beams which are initially in a coherent state, where 
the matrix elements are (Loudon 1973) 

P,,.,,,(o)= exp(-lo12)o"o*"'/(n !n'"''' (8) 
and the mean photon number is la 1 2 .  

3. Steady-state solution 

After a sufficiently long period of time has elapsed, the photon system settles down 
into a steady state in which all the rates of change (7) are zero. Summation of (7) over 
n then gives 

Noting from (7) that all the transformed matrix elements have the same sign in the 
steady state, we deduce from (9) that the only off-diagonal matrix element which can 
differ from zero is &(1, CO). The diagonal elements (p = 0), treated by Simaan and 
Loudon (1975), can be non-zero only for n = 0 and 1. 

For the case p = 1, it is not difficult to prove from the equation of motion (7) that 
even 

(d/dT) 1 {n!/2"[(fn)!]*)t,bn(1, T )  = 0. 
n 
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The existence of this constant of the motion provides an expression for the steady- 
state off-diagonal matrix element in terms of the initial matrix elements 

even 

pO,l(a)= $ 0 ~ ~  a>= C {n!/2“[(4n)!1’M,(l, 0). (11) 
n 

All other CL = 1 matrix elements decay from their initial values to become zero in the 
steady state. 

Thus in terms of the original notation, the only matrix elements which can be 
non-zero in the steady state are ~ 1 . 1 ,  PO,,,, p0.1 and p l , ~ .  These conclusions are borne 
out by the results of the following section for the general time dependence of the 
matrix elements. 

Consider as an example the initially coherent state described by (8). We put 

a = la1 exp io 

$,,(I, o)= (n + I)~/’~,,, , ,+~(O)= exp(-I~/2-ie)Ia(2fl+1/n!. 

(12) 

(13) 

and ( 5 )  gives 

The steady-state matrix element from (11) is 

~ ~ , ~ ( a )  = exp(-Ia I’ - i e ) b  Ir0(b 1’1, (14) 
where 

cc 

l o ( 1 a 1 ~ )  = m C = O  (tIaI2)’”/(m !I’ (15) 

is a modified Bessel function of the first kind. Its asymptotic form for la 1’ >> 1 is 

for initially intense coherent light. The two steady-state diagonal matrix elements 
have the value 0.5 in the same limit (Simaan and Loudon 1975). 

An initially chaotic light beam has zero off-diagonal matrix elements of the density 
operator at all times. 

4. General-time solution 

The equation of motion (7) is solved by the use of a generating function defined as 

On multiplication of both sides of (7) by y ”  and summation over n we obtain 

aG/ar = (1 -Y’)(a’G/ay’)-CLY(aG/ay)-CL(CL - 1 ) ~ .  (19) 
If G is known, the transformed matrix elements can be found from 
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The equation for the generating function is solved by the method of separation of 
the variables, as in the diagonal case (McNeil and Walls 1974, Simaan and Loudon 
1975). The solution has the form 

where Cz(y) is a Gegenbauer polynomial with 

a=I(p-l)  

and 

hk = k(k + p  - l )+$k(p - 1). 

The coefficients A;  are determined from the initial conditions, and using standard 
properties of the Gegenbauer polynomials, as in the diagonal case, we find 

where the Gm(p, 0) are the initial transformed matrix elements of the density operator. 
The Gegenbauer polynomials have the following properties (see 8 10.9 of ErdClyi 

et a1 1953) 

and 

It therefore follows from (20), (21), (25) and (26) that 

This result gives the general solution for the time dependence of the transformed 
matrix elements except that it excludes the case a = 0 or p = 1. This exclusion arises 
from a a # 0 restriction on an orthogonality relation used in the derivation of (24). 
This difficulty can be avoided by working instead with the Tchebichef polynomial of 
the first kind Tk(y) related to the a = 0 Gegenbauer polynomial by 

c E ( y ) =  (1/2k)Tk(y). ( 2 8 )  

The calculation now proceeds in the same way as that described earlier in the section, 
making use of the analogous integral and differential properties of the Tchebichef 
polynomials given for example in 0 10.11 of ErdClyi et a1 (1953). The final results are 
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where 

and 

Equations (24), (27), (29)  and (30)  provide complete solutions for the time 
dependences of all matrix elements of the density operator for all initial states of the 
light beam. The diagonal result obtained by setting g = 0 and U = -4 in (27)  
reproduces equation (63)  in Simaan and Loudon (1975). In the steady state achieved 
by letting T tend to infinity, it is clear from (23) that only matrix elements with g = 0 or 
1 can survive; in the latter case (29)  is zero except for n = 0, when it reduces to Bo, and 
(30)  reproduces the result ( 1 1 )  for the only non-zero off-diagonal matrix element. 

5. Discussion 

The diagonal matrix elements of the density operator are fully discussed in our earlier 
paper and we make no further comment here except to show in figure 1 their time 
dependence for an initially coherent beam of light. The light in this case is anti- 
bunched for all times T > O  and the graph shows the way in which the diagonal 
distribution pn," tends to its steady-state form with only po,o and non-zero. Initially 
chaotic light shows a qualitatively similar behaviour for times T greater than about 0.2  
where it also becomes antibunched. 

The properties of the off -diagonal matrix elements are best illustrated by evaluat- 
ing their impact on some observable quantity. The electric-field expectation value of 
the light, depending on the CL = 1 matrix elements is a convenient quantity to consider. 
According to chapter 7 of Loudon (1973), the electric-field expectation value shows a 

;:i 0.1 

n 

Figure 1. Diagonal distributions p,," as functions of n for the times T indicated against the 
curves for an initially coherent light beam with mean photon number equal to ten. 
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sine-wave behaviour with amplitude 

E = (2hw/eo~)’ /~  ( n  + 1)1/21pn,n+lI, (32) 
n 

where V is the quantisation volume. For an initially coherent state specified by (8) 
and (12), the phase of the sine wave is 8 at all times, and the value of the summation in 
(32) changes from la1 at T = 0 to ( 2 ~ ) - ’ ’ ~  at T =CO (from (17) assuming IaI2 >> 1). 
Figure 2 shows the complete time dependence of the summation, calculated with the 
help of (29) and (30). The uncertainty AE in the electric field can also be calculated; it 
increases slightly from its constant value (hw/2eo V)1’2 in the initial coherent state to 
become comparable with the electric-field amplitude (32) in the steady state. 

I I I I I I 
0 2  0.L 06 0.8 1 0  1.2 

T 

Figure 2. Time dependence of the electric-field amplitude for initially coherent light with 
the mean photon numbers shown on the curves. The quantity plotted on the vertical axis 
is the summation in (32) and the broken line is the steady-state asymptote at (27r)-”’. 

The feasibility of making measurements of electric fields within the constraints 
imposed by quantum mechanics is very carefully considered by Bohr and Rosenfeld 
(1933). They conclude that such measurements are in principle possible provided that 
in deriving quantum-mechanical predictions, proper account is taken of the finite 
spatial and temporal extents necessarily present in practicable measurements. Such 
account has not been taken here and electric-field measurements at optical frequen- 
cies are not in any case currently possible. However, the results derived provide the 
basic information needed for more realistic calculations of the measurable electric 
field and more generally for other off-diagonal properties of two-photon absorbed 
light. 

The electric-field variation explicitly derived here, that of a sine wave of fixed 
phase, diminishing amplitude and increasing uncertainty spread, adds to the known 
features of the initially-coherent antibunched light. The electric-field behaviour does 
not in fact show such remarkable effects as other features of antibunched light, 
particularly the predicted negative Hanbury Brown and Twiss correlation. Finally, it 
should be emphasised that in the example of initially coherent light, the light at all 
subsequent times cannot be described in classical terms, and this is particularly 
apparent in the steady state where the quantum-mechanical uncertainty AE is 
comparable to the field amplitude E. 
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